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Thickness Corrections for Capacitive

Obstacles and Strip Conductors*

SEYMOUR B. COHN~, FELLOW, IRE

Summary—Capacitive thickness corrections are derived exactly

for two basic geometries involving pairs of semi-infinite plates. In one

arrangement the pair of plates are coplanar, while in the other they

are parallel to each other. In each case the total capacitance per unit

length between the pair of plates is infinite, but the incremental in-

crease of capacitance when the thickness is increased from zero to a

value t is finite. These capacitance increments are evaluated, and it

is shown how they may be used as approximate thickness corrections

in a great varity of more complicated geometries involving capacitive

obstacles in waveguide, coaxial line, and artificial dielectric media.

They may also be applied to coupled-strip-line conductors. As exam-

ples, the corrections are applied in detail to a waveguide iris, and to

three useful coupled-strip-line cross sections.

1. INTRODUCTION

s

OLUTIONS for many capacitive-obstacle and

strip-transmission-line cross sections are available

only in the case of zero-thickness conductors. If

the conductors are sufficiently thin, as in the usual

photo-etched strip-line circuit, the accuracy of the solu-

tion will be good, but in numerous practical microwave

structures finite thickness has a large effect. Except in a

few simple cases, exact solutions for the parameters of

cross sections containing thick edges are very difficult to

achieve. In order to alleviate this problem, two basic

thick-edge cross sections are considered in this paper,

and the increase in capacitance due to finite thickness is

given for each case. These capacitance increments may

be applied as corrections to a wide variety of practical

structures for which the zero-thickness solutions are

either available or obtainable.

The two basic cross sections treated in this paper are

shown in Fig. 1. One consists of a pair of semi-infinite

thick plates in a coplanar arrangement [Fig. 1 (a)],

while the other consists of a pair of semi-infinite thick

plates in a parallel arrangement [Fig. 1 (c)]. In each

case, an electric wall may be inserted in the plane of

symmetry, thus creating the unsymmetrical equiva-

lents shown in Fig. 1 (b) and 1 (d). The total capacitance

between the semi-infinite conductors are Cl’ (t/s) and

Cz’(t/s) farads per unit length, respectively, in which

the prime mark indicates that the capacitance is com-

puted for one unit of length of the cylindrical conduc-

tors. Because the plates are semi-infinite, Cl’ (t/s) and

C7,’(t/s) are infinite, However, the incremental increase

in capacitance when t is increased from zero with s held

constant is a finite quantity. This increment of ca-
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Fig. l—Basic semi-infinite plate cross sections. (a) and (b) Coplanar
arrangement and unsymmetrical equivalent. (c) and (d) ParaI-
Iel arrangement and unsymmetrical equivalent.

pacitance is defined in each case as follows:

ACI,,’(t/s) = CI,z’(t/s) – C,,,’(O). (1)

If one considers the field-distribution patterns for

t = O and for t >0, one realizes that they differ mainly

near the plate edges, with negligible difference far from

the edges. Thus the increments A Cl’(t/s) and A C,’(t/s)

arise from field distortions close to the edges, and their

values would be affected only very slightly if additional

structural surfaces were present at locations relatively

distant. Consequently the capacitance increments de-

rived for Fig. 1 (a) and 1(c) may be used as thickness cor-

rections in the case of more complex cross sections for

which zero-thickness solutions can be obtained.

Fig. 2 shows a number of practical configurations to

which the capacitive increment for the coplanar-plate

case may be applied as a thickness correction. Solutions

valid for zero thickness are already available for most of

these,l–4 and are feasible to obtain for the others. In the

coaxial-line cases, the total correction is 27rr,. 2AC1’ (t/s),

where Ye is a judiciously chosen radius between that of

‘ N. Marcuvitz, “Waveguide Handbook, ” McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 218-221; 1951.

2 Ibid., pp. 229–238.
2 S. B. Cohn, “Shielded coupled-strip transmission line, ” IRE

TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-3, pp.
29–:? Ogto:b~n1955.

. . , ~Analysis of the metal-strip delay structure for
microwa>-e lenses, J. Appl. Phys., vol. 20, pp. 251–262; March,
1949. Also, “Addendum,” p. 1011; October, 1949.
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Fig. 2—Practical cases where the coplanar plate thickness correction
may be applied. (a)–(e) Examples of capacitive obstacles of mod-
erate thickness in waveguide and coaxial line. (f) Metal strip arti-
ficial dielectric medium. (g) Coplanar coupled strip line in odd
mode.

the disk and that of the outer conductor. In order for the

correction to apply accurately to the cases in Fi,g. 2, it is

necessary that s/}~ and s/~ be sufficiently small com-

pared to unity (A, is the guide wavelength and r is the

distance from the center point of the symmetrical con-

figuration to the nearest extraneous surface). Fortunate-

ly, these requirements are not very stringent. On the

basis of a study of the waveguide iris of Fig. 2(a) (see

Section IV), it is believed that the correction. will usually

yield good results for s/X, as large as 1/4, and s/r at

least as large as 1/2.

Fig. 3 shows situations in which the capacitive incre-

ment for the parallel-plate case may be applied. Formu-

las for the odd- and even-mode characteristic imped-

ances of the coupled-strip lines in Fig. 3(a) and 3(b)

have recently been given in another paper, assuming

zero thickness.5 As shown in Section V, the capacitive

increment for the parallel-plate case may be used to

compute a thickness correction for the odd mode. Fig.

3(c) shows a strip conductor over a ground plane, for

which the same correction term is applicable. Fig. 3(d)

shows an example of a coaxial cavity containing a ca-

pacitive disk closely spaced from an end wall. FIere,

also, a.n effective radius r, lmust be judiciously chosen,

yielding a total thickness correction AC= 2nv,. 2ACZ’(t/s).

This problem has been considered in detail by the

author, and has resulted in formulas for the resonant

frequency and unloaded Q of coaxial cavities of the

type shown in Fig. 3(d). The minimulm allowable dis-

tance from the edges to the nearest extraneous surface

in the configurations of Fig. 3 cannot be determined

3 S. B. Cohn, “Characteristic impedances of broadside-coupled
strip transmission lines, ” 1RE TRAFJS. ON MICROWAVE THEORY AND
TECH~KXJES, this issue, p. 633.

——
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Fig. 3—Practical cases where the parallel-plate
thickness correction may be applied.

precisely. However, it is expected that gc~od results will

usually be obtained for (s+2t)/r as large as l/2, and for

(s+2t)/hg as large as 1/4.

II. THICKNESS-CORRECTION TER.M I?OR

COPLANAR PLATES

As derived in Appendix 1, the incremental capaci-

tance per unit length is as follows for the coplanar plates

of Fig. l(a) :

E(k) – (1/2) k’’K(k)
AC~(t/s) = : In

T [ @ 1
where the parameters k and k’ are solved from

lowing equations as functions of t/s:

——
s

[

kJ2 –

2 E(k) – ~ K(k) 1
k’ = /1 – k2.

(2)

the fol-

(3)

(4)

The units of A C,’ (t/s) are the same as those of the per-

mittivity e, which for free space has the value 8.85

(10)-’2 farads per meter, 0.0885 ppf per cm, or 0.225 ppf

per inch. K(k) and E(k) are complete elliptic integrals

of the first and second kinds, respectively.

Eqs. (2)–(4) have been computed, and the resulting

curve is given in Fig. 4. The procedure usecl was first to

select values of k, and then to calculate the correspond-

ing values of A Cl’ and t/s. The quantity plotted is

[AC1’(t/s) – et/s] /e, in which the term d/s k the

parallel-plate capacitance per unit length neglecting

fringing. By subtracting this parallel-plate term from

A Cl’, the curve is made to approach a constant value

as t/s is made large enough so that the fringing fie’~ds on

the two sides of the configuration become independent.

It is seen that this occurs for t/s> 1. The limiting value

of A Cl’ for t/s 21 is of interest. With the aid of lin~iting

values of the elliptic integrals, one may show this to be
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AC1’
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The curve approaches zero as t/s goes to zero. For

t/s <0.001 the correction is very small, so that param-

eter values for zero-thickness cases may be used with

high accuracy. For t/s >0.5, the correction is essentially

constant, so that data for isolated step discontinuities

may be applied accurately. The range 0.001 <t/s <0.5

is, therefore, the region of interest for which the thick-

ness correction presented here is needed. Most practical

capacitive-iris structures fall within this range.

005
I I I 111111 I r, 11111 I I I 1111 I

– o IJ ‘ /
004

I
I

.

>
1~

1 003

< – ‘;1 5“ ‘

<

A C;( f/sl = C;[t/s)-c;(o)
: 00?.u–

q

001— ‘ ~.-
/“

0 .-
~ ‘

I I I 1111 I 1[ , Ill I
0001 0002 0005 001 002 005 01 02 05 10 15 20

f/$

Fig. 4—P1ot of coplanar capacitance correction.
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Fig. 5—Plot of parallel-plate capacitance correction.

III. THICKNESS-CORRECTION TERM

FOR PARALLEL PLATES

The following formula is derived in Appendix II for

the incremental capacitance per unit length of the par-

allel plates of Fig. 1(c).

‘c’(”) ‘;[(1++(1+3-+1”+1 “)
Eq. (6) is plotted in Fig. 5.

IV. EXAMPLE OF THICK CAPACITIVE

IRIS IN WAVEGUIDE

The manner in which the thickness correction may be

applied to practical configurations will be illustrated by

the example of a thick capacitive iris in waveguide.

(This case has also been treated by NIarcuvitz by dif-

ferent methods.’) Fig. 6(a) shows a longitudinal E-

plane section through a rectangular waveguide con-

taining a zero-thickness, perfectly conducting, symm-

etrical capacitive iris. It is assumed that only the TEIO

mode is propagating. In the limiting case of b/&40,

the equivalent normalized susceptance of the irisl is

B ()Ts
‘Incsc ~ ,

Yo = Ag
(7)

where B is the susceptance of the iris, YO is the char-

acteristic admittance of the waveguide, AQ is the guide

wavelength, and b and s are dimensions defined in Fig.

6(a).
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Fig. 6—Capacitive obstacle in rectangular waveguide for (a) very
thin, (b) moderately thick, and (c) very thick cases.

In applying the capacitive thickness correction, it is

necessary to employ an equivalence theorem between

E-plane structures in TEIO-mode rectangular waveguide

and in TEM-mode parallel-plane transmission line. If

the structure has the same boundary in all longitudinal

E-plane sections in both cases, then the normalized ele-

ment values of the waveguide equivalent circuit are

identical to those of the parallel-plane equivalent cir-

cuit, if Xc of the TE1o mode is used in place of X of the

TEM mode. 7 The normalized susceptance increment

due to thickness may therefore be evaluated in terms of

AC1’ as follows. Assume a parallel-plane TEIWmode

transmission line with E-plane dimension b and n-plane

dimension u. The characteristic admittance is YO

= (a/b) <~ mhos, where e and K are the permittivity

and permeability of the filling medium in mks

units. The susceptance increment is AB = w-oAC1’

= 27raA C1’/A~~. Hence, the normalized susceptance

increment due to thickness is

AB 2rb ACI’
.— .—— .

Yo k e

& Marcuvitz, op. cit., pp. 248–255 and +04–406.
7 C, G. Montgomery, R. H. Dicke, and E. M. Purcell, “Principles

of Microwave Circuits, ” McGraw-Hill Book Co., Inc., New York,
N. Y., p. 172; 1948.
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By virl:ue of the equivalence theorem, the correspond-

ing quantity in rectangular waveguide is

AB 2irb AC,’
.— .— (8)

%Age’

where AC1’/e is obtained as a function of t/s from (2)–

(4), or from the graph in Fig. 5.

In addition to the increase in capacitive susceptance,

thickness also requires a series inductive reactance to

be added to the equivalent circuit, as shown in Fig. 6(b).

This reactance represents the magnetic-field energy in

the gap region of the thick iris. In the parallel-plane

case, the inductance of this region is simply L =@s/a,

while the characteristic impedance is 20== ~K/e(b/a).

Therefore, the normalized reactance is uL/ZO = 2rts/Ab.

In waveguicle, this becomes,

(IJL 27rts
——

Z. – Aqb “
(9)

Au interesting check on the thickness correction may

be obtained in the very thick iris case of Fig. 6(c). If

f/&<<l and t/s z 1, the total shunt susceptance is ob-

tained by adding (7) and (8), with the aid of (5):

:=;[’ncsc(a+;+’+%l’10)
In the limit s/b-0, this reduces to

B

( )
—–~ ln~+l+g .—

Y“ g 2s
(11)

The tcjtal susceptauce for this case may also be evalu-

ated by adding the parallel-plate capacitance to two

times the step discontinuity capacitance. ‘The normal-

ized shunt susceptance appropriate to the parallel-plate

capacitance is (27rt/&) (b/s), while the normalized step

discontinuity susceptances in the limit s/b~O is

(2b/Xu) [ln(b/4s) + 1 ]. The total shunt susceptance is,

therefore.

:=2(3(++1)+%
(12)

This agrees exactly with (11), which was obtained by

adding the thickness correction to the zero-thickness

value. It should be remembered that this exact agree-

ment assumes s/b<<l. However, more detailed calcula-

tions have indicated close agreement for s/bs 0.25, and

fair agreement for s/b at least as large as 0.6.

8 Ibid., pp. 307–310.

V. EXAMPLES OF THICK COUPLED STRIPS

A. Coplanar-Coupled Strip Line

The coplanar-coupled strip transmission line of Fig. 7

will now be considered. The odd- and even-mode char-

acteristic impedances of one strip to ground are related

to the odd- and even-mode capacitances per unit length

of one strip to ground by, respectively,

(b)

mzfic)
Fig. 7-

Zoo=Z. , C:. =(7;

(c)

Coplanar coupled-strip transmission line.

(13)

where w and e are the permeability and perrnittivity of

the filling medium in mks units. First consider the odd

mode. Symmetry permits a vertical electric wall to be

inserted between the strips, reducing the cross section

to that of Fig. 7(c). The characteristic impedance and

capacitance per unit length of Fig. 7(c) are z.. and G’,

the quantities desired. In general, C..’ is a function of

the dimension ratios w/b, s/b, and t/b. For f/b = O [Fig.

7(a)],

Co,(;+)=co,(;j;j 0), (14)

which may be obtained exactly from Cohn.a For

t/b >0, b should be increased by t to b’== b+t, as shown

in Fig. 7(b) and 7(c), so that the proportious above and

below the strips will be unchanged. Then the thickness

effect at the strip edges adjacent to the gap s requires

the addition of 2AC1’ (t/s) to C~~’ (w/b, s/b, 0). The gap

s is assumed to be small enough compared to b/2 :and w

for A c< (t/s)to apply accurately (S< b/4 ands < w,I’2 are

probably sufficient). At the strip edges remote from the

gap, the thickness effect requires the additicm of

2Cf’(t/b’) – 2Cf’(0), where Cf’ (t/b’) is the fringing
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capacitance to ground per unit length from each corner

of a semi-infinite plate of thickness t midway between

infinite ground planes of spacing b’, and Cf’(0) is the

same for t = O. Values of Cf’ (t/b’) may be obtained from

(5) or Fig. 3 of Cohn.’ Hence fort> O,

cot%+’)=Co’(:’:’ ‘)+’AC’(”s’
+ 2Cf’(t/b’) – 2Cf’(0) . (15)

For the even mode, the two strips are at the same po-

tential, so that AC1’(t/s) does not apply. Eq. (18) of

Cohn3 may be used to obtain a good approximation to

Z.. or C..’. Or, for s/b small, another very good approx-

imation is

‘c%’+’‘)+’cf’(a-’c(o)’‘1’)
where Co,’ (w/b, s/b, O) is the even-mode capacitance? to

ground per unit length for zero-thickness strips, obtain-

able exactly from Cohn.3

B. Broadside-Coupled Strip Line

Formulas valid for zero thickness have been obtained

for the even- and odd-mode characteristic impedances

of the two broadside-coupled strip cross sections of Figs.

8(a) and 9(a). The corresponding capacitances per unit

length of one strip to ground, Coo’(w/b, s/b, O) and

Cot’ (w/b, s/b, O), are related to these characteristic

impedances by (13).

First consider the odd mode in Fig. 8. For t >0, the

proportions above and below the pair of strips may be

preserved by increasing the plate spacing to b’= b+2t.

The odd-mode potential distribution permits insertion

of an electric wall at ground potential between the

strips, reducing the cross section to that of Fig. 8(c).

The characteristic impedance of the latter cross section

is the quantity desired. This may be obtained from the

capacitance per unit length of the odd mode, which is

approximately as follows,

( )coo’ ;,+
s

‘co;(:):‘)+4AC’(3‘“)

g S. B. Cohn, “Problems in strip transmission lines, ” IRE TRANS.
ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-3, pp. 119–
126; March, 1955.

(a)

(b)

(c)

Fig. 8—Broadside coupled-strip transmission
strips parallel to ground planes.

November

line:

For the even mode, if t<<s, the capacitance per unit

length is,

in which s’ =s+2t. If t>>s, then

where Co’(w,ib’, t’/w) is the characteristic impedance of

a single strip of width w and thickness t’midway be-

tween ground planes spaced by b’= b+2f. g,10 Here,

t’= s+2t. In the usual case of close coupling, (18) and

(19) will agree very closely for any values oft and s.

NTOW consider Fig. 9. The odd-mode characteristic

impedance of Fig. 9(b) is equal to the characteristic

impedance of the reduced cross section shown in Fig.

9(c). The capacitance per unit length of the latter cross

section is

Co’(:’:’+)
= “oo(:’+’‘)+’AC’(+)’20)

For the even mode, if t<<s,

((’&: ?,:

bb
,+)=C.,(;+ O), (21,

10 R. H. T. Bates, “The characteristic impedance of the shielded
slab line, ” IRE TRAiW. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-4, pp. 28–33; January, 1956.
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(a)

(b)

zoo=Z. , C;O=c;

(c)

for

Fig. 9—Broadside coupled-strip transmission line;
strips perpendicular to ground planes.

in which s{ =s+.lt. If t>>s,

cow-’:)=+coca’22)

Capacitive Obstacles and Sfrip Conductors

where w’= s+2t and t’= w. Again, there will generally

be little difference between (21) and (22) in the usual

case of close coupling.

Fig. 10—Coplanar semi-infinite plate boundary in z plane,

643

where k = 1 — k’2 is a real, positive parameter between O

and 1 that may be solved as a function of t/s from the

following equation:

t K(k’) – 2E(k’) + k’lr(k’)
— _—— ——— (24)
s 2[2E(k) – k“K(k)] “

The symbol u is a complex variable thai; is a function of

z = x+~y, and sn(u, k) is an elliptic function .11’12The

transformation relating z and u is

VI. CONCI. LTSIONS

Practical geometries containing thick capacitive ob-

stacles or strips can seldom be solved rigorously, al-

though solutions are frequently possible if zero thickness

is assumed. The approximate thickness corrections de-

rived in this paper may be applied to many practical

cross sections for which zero-thickness solutions are

available or can be obtained. The examples treated

demonstrate the simplicity of this method.

.4 PPENDIX I

DERIVATION OF AC,’ (t/s)

The derivation of (2) and (3) is based on a conformal-

mapping analysis by Davyll of the double-semi-infinite-

plate boundary shown in Fig. 10. He obtained the fol-

lowing formula for the capacitance per unit length be-

tween the two plates over the regions QB CDP and

Q’B’C’D’P’ of the boundary:

C/ = – ~ln [kstz’ (U2, k)], (23)
n-

where zn, Gn, and dn also are elliptic functions.

At point P between D and E-Oil the boundary, u is

negative real, approaching zero as yz approaches infinity.

The following limiting values are valid for L~+O:

S}2(ZL, k) -+ ‘u dn (u, k) s 1

C?2(U, k) + 1 Z?2(ZL,k) -+ [1 – E(k)/K(k)]zL (26)

Substituting these in (25) we obtain in the limit t~aO,

s

(27)
‘2 = 2[2E(k) – k“K(k)](- 242)

while (23) recluces to

1

()
C,’=yln —

n’ kw? “
(28)

11N. Day-y, ‘(The field between equal semi-infinite rectangular
electrodes or magnetic pole pieces, ” Phil. Mug., vol. 3.5, ser. 7, pp.
819-840; December, 1944.

u F. oberhet~inger and W. Magnus, “Anwendung der ElliP

tischen Funktionen in Physik und Technik, ” Springer-Verlag, Berlin
Ger., 1949.
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Combining (27) and (28) leads (in the limit yi~~ ) to

the following:

“(+’:)=W+”2E”)2=J ’29)

.— —.....
/.? LINES>, ;:,

‘—~’<’
.,

/ ,’ z PLANE

/’ /’
‘\ \

,,
/’

+ ‘“;\

i ,“
,Y

\ ‘,
1 ‘\

This may be simplified for t/s~O, since then k~l, //
~=~ * s/2 i \

k’GO, E(k)+l, and k“K(k)-+0. Thus
v

1 .! ~
+

T=o
—z

~a0 z. o ‘b ‘bo

Now we shall

by

AC,’(t/s) =

()cl’ o,~ = ~lnq.
s n- s

(30)

define the capacitance increment AC1’(t/s)

Kdc’’(+’3-c+:)] ‘3’)
Eq. (2) now follows directly from (29)–(31),

APPENDIX II

DERIVATION OF AC2’(t/s)

The derivation of (6) will be outlined to illustrate the

method of analysis, but with intermediate steps omitted

for brevity.

E. Weber13 gives the transformation z =~(w) that re-

lates the z and w planes in Fig. 11 such that all the con-

ducting boundaries in the z plane are transformed into

the real axis of the w plane. The top, bottom, and end of

the selmi-infinite plate in the z plane transform into the

negative real axis of the w plane, while the infinite

boundary at ground potential in the z plane transforms

into the positive real axis of the w plane. A minute break

in the real axis may be assumed at u = O to permit the

discontinuity in potential.

The electric-field lines above and to the right of the

plate in the z plane become semicircles as \ z I becomes

large. Below the plate, the field lines become straight

vertical lines as x recedes to minus infinity. In the w

plane, all electric-field lines are semicircles with center

at w=O,

The capacitance per unit length in the w plane due to

the electric flux contained between field lines of radius

(a)

,, ..-~...
/ a PLANE

,/’

%.

Fig. 1l—Transforrnation between .2 and w planes
used in derivation of ACZ’(t/s).

Let points z.= x. +.iO and Zb = %b +jO correspond to

zva = % +jO and Wb = L!b +jo, respective y. Because of a

basic property of conformal transformations, we know

that the capacitance per unit length in the z plane due

to the electric flux contained between field lines termi-

nating at x. and %b is exactly equal to cab’. Now, if t is

reduced to zero withs unchanged, points x. and Xb move

to &O and ~bO, with the capacitance per unit length still

equal to the same value, cab’. But in comparing the t = O

and t> O cases, we must evaluate the capacitances be-

tween the same points on the x axis. Let these points be

x~o and %bO in both cases. Then for t> O and x very large,

the electric flux terminating between %b and ~bO adds

to (%’, while the flux terminating between x. and x~o

adds

(34)

The total difference in capacitance per unit length be-

tween the values for t >0 and t = O is therefore
(32)

AC.’ + ACb’ = 2AC,’(t/s) , (35)

18E. \Veber, “Electronlagnetic Fields, Vol. 1,” John t~iley and
where A C~’(t/s) is the thickness-effect increment for the

Sons, Inc., New York, N. Y., p. 351, (55); 1950. (Note that@ should symmetrical parallel-plate configuration. Carrying the

be related to k by p=2k2–l+2k{k2– 1,) above steps out in detail leads to (6).


