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Thickness Corrections for Capacitive
Obstacles and Strip Conductors®

SEYMOUR B. COHNTY, FELLOW, IRE

Summary—~Capacitive thickness corrections are derived exactly
for two basic geometries involving pairs of semi-infinite plates. In one
arrangement the pair of plates are coplanar, while in the other they
are parallel to each other. In each case the total capacitance per unit
length between the pair of plates is infinite, but the incremental in-
crease of capacitance when the thickness is increased from zero to a
value ¢ is finite. These capacitance increments are evaluated, and it
is shown how they may be used as approximate thickness corrections
in a great varity of more complicated geometries involving capacitive
obstacles in waveguide, coaxial line, and artificial dielectric media.
They may also be applied to coupled-strip-line conductors. As exam-
ples, the corrections are applied in detail to a waveguide iris, and to
three useful coupled-strip-line cross sections.

I. INTRODUCTION
SOLUTIONS for many capacitive-obstacle and

strip-transmission-line cross sections are available

only in the case of zero-thickness conductors. If
the conductors are sufficiently thin, as in the usual
photo-etched strip-line circuit, the accuracy of the solu-
tion will be good, but in numerous practical microwave
structures finite thickness has a large effect. Exceptin a
few simple cases, exact solutions for the parameters of
cross sections containing thick edges are very difficult to
achieve. In order to alleviate this problem, two basic
thick-edge cross sections are considered in this paper,
and the increase in capacitance due to finite thickness is
given for each case. These capacitance increments may
be applied as corrections to a wide variety of practical
structures for which the zero-thickness solutions are
either available or obtainable.

The two basic cross sections treated in this paper are
shown in Fig. 1. One consists of a pair of semi-infinite
thick plates in a coplanar arrangement [Fig. 1(a)],
while the other consists of a pair of semi-infinite thick
plates in a parallel arrangement [Fig. 1(c)]. In each
case, an electric wall may be inserted in the plane of
symmetry, thus creating the unsymmetrical equiva-
lents shown in Fig. 1(b) and 1(d). The total capacitance
between the semi-infinite conductors are Ci'(¢/s) and
Cs'(t/s) farads per unit length, respectively, in which
the prime mark indicates that the capacitance is com-
puted for one unit of length of the cylindrical conduc-
tors. Because the plates are semi-infinite, Ci'(¢/s) and
Co’'(¢/s) are infinite. However, the incremental increase
in capacitance when ¢ is increased from zero with s held
constant is a finite quantity. This increment of ca-
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Fig. 1-—Basic semi-infinite plate cross sections. (a) and (b) Coplanar
arrangement and unsymmetrical equivalent. (c) and (d) Paral-
lel arrangement and unsymmetrical equivalent,

pacitance is defined in each case as follows:
ACy ' (t/s) = Cu,)'(t/s) — C1,5'(0). (0

If one considers the field-distribution patterns for
=0 and for £>0, one realizes that they differ mainly
near the plate edges, with negligible difference far from
the edges. Thus the increments AC:(¢/s) and ACy'(t/5)
arise from field distortions close to the edges, and their
values would be affected only very slightly if additional
structural surfaces were present at locations relatively
distant. Consequently the capacitance increments de-
rived for Fig. 1(a) and 1(c) may be used as thickness cor-
rections in the case of more complex cross sections for
which zero-thickness solutions can be obtained.

Fig. 2 shows a number of practical configurations to
which the capacitive increment for the coplanar-plate
case may be applied as a thickness correction. Solutions
valid for zero thickness are already available for most of
these,’* and are feasible to obtain for the others. In the
coaxial-line cases, the total correction is 2mwr,-2ACy'(¢/s),
where 7, is a judiciously chosen radius between that of

L N. Marcuvitz, “Waveguide Handbook,” McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 218-221; 1951.

2 Ibid., pp. 229-238.

35, B. Cohn, “Shielded coupled-strip transmission line,” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-3, pp.
29-38; October, 1955,

48, B. Cohn, “Analysis of the metal-strip delay structure for
microwave lenses,” J. Appl. Phys., vol. 20, pp. 251-262; March,
1949. Also, “Addendum,” p. 1011; October, 1949,
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Fig. 2—Practical cases where the coplanar plate thickness correction
may be applied. (a)-(e) Examples of capacitive obstacles of mod-
erate thickness in waveguide and coaxial line. (f) Metal strip arti-
ﬁcizl dielectric medium. (g) Coplanar coupled strip line in odd
mode.

the disk and that of the outer conductor. In order for the
correction to apply accurately to the cases in Fig. 2, it is
necessary that s/A, and s/r be sufficiently small com-
pared to unity (A, is the guide wavelength and 7 is the
distance from the center point of the symmetrical con-
figuration to the nearest extraneous surface). Fortunate-
ly, these requirements are not very stringent. On the
basis of a study of the waveguide iris of Fig. 2(a) (see
Section IV), it is believed that the correction will usually
yield good results for s/\, as large as 1/4, and s/7 at
least as large as 1/2.

Fig. 3 shows situations in which the capacitive incre-
ment for the parallel-plate case may be applied. Formu-
las for the odd- and even-mode characteristic imped-

ances of the coupled-strip lines in Fig. 3(a) and 3(b)

have recently been given in another paper, assuming
zero thickness.® As shown in Section V, the capacitive
increment for the parallel-plate case may be used to
compute a thickness correction for the odd mode. Fig.
3(c) shows a strip conductor over a ground plane, for
which the same correction term is applicable. Fig. 3(d)
shows an example of a coaxial cavity containing a ca-
pacitive disk closely spaced from an end wall. Here,
also, an effective radius », must be judiciously chosen,
yielding a total thickness correction AC=12xr,-2AC(¢/s).
This problem has been considered in detail by the
author, and has resulted in formulas for the resonant
frequency and unloaded Q of coaxial cavities of the
type shown in Fig. 3(d). The minimum allowable dis-
tance from the edges to the nearest extraneous surface
in the configurations of Fig. 3 cannot be determined

58S, B. Cohn, “Characteristic impedances of broadside-coupled
strip transmission lines,” IRE TrRANS. ON MICROWAVE THEORY AND
TECHNIQUES, this issue, p. 633.
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Fig. 3—Practical cases where the parallel-plate
thickness correction may be applied.

precisely. However, it is expected that good results will
usually be obtained for (s+2¢) /7 as large as 1/2, and for
(s+2£) /N, as large as 1/4.

I1. THICRNESS-CORRECTION TERM FOR
CoPLANAR PLATES

As derived in Appendix I, the incremental capaci-
tance per unit length is as follows for the coplanar plates
of Fig. 1(a):

2e [E(k) - (1/2)1@/21{(.@}
(2)

ACY(t/9) = —1n i

where the parameters & and %’ are solved from the fol-
lowing equations as functions of #/s:

tr e K(F) — E()

t 2

— = e 3)
2|:E(k) - K(k)]

B =1— k. (4)

The units of AC,/(¢/s) are the same as those of the per-
mittivity e, which for free space has the value 8.85
(10)2 farads per meter, 0.0885 uuf per cm, or 0.225 uuf
per inch. K(k) and E(k) are complete elliptic integrals
of the first and second kinds, respectively. ,

Egs. (2)-(4) have been computed, and the resulting
curve is given in Fig. 4. The procedure used was first to
select values of k, and then to calculate the correspond-
ing values of ACy and t/s. The quantity plotted is
[ACY'(t/5) —et/s]/e, in which the term e/s is the
parallel-plate capacitance per unit length neglecting
fringing. By subtracting this parallel-plate term from
ACy’, the curve is made to approach a constant value
as t/s is made large enough so that the fringing fields on
the two sides of the configuration become independent.
It is seen that this occurs for #/s>1. The limiting value
of ACy for t/s>11is of interest. With the aid of limiting
values of the elliptic integrals, one may show this to be
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ACY ¢
=t

€ N

2 T t
*(1 —+ ln~> = — 4 0.0415. (5)
T 8 s

The curve approaches zero as i/s goes to zero. For
t/s <0.001 the correction is very small, so that param-
eter values for zero-thickness cases may be used with
high accuracy. For ¢/s>0.5, the correction is essentially
constant, so that data for isolated step discontinuities
may be applied accurately. The range 0.001 <{/5<0.5
is, therefore, the region of interest for which the thick-
ness correction presented here is needed. Most practical
capacitive-iris structures fall within this range.

005

T TITHT \
004 i
i

<

=

f” oos |+
=S

3

e

<

‘ |

AC (t1s)= C{lt/s)~C;0)

o
Q
8

Q
Q00 0002 0005 001 002 005 o1 o2 05

ACy(E/s )=yl t/s)=CLO) |

o [ [ R
o] ol 02 03 04 05 06 o7

t/s

Fig. 5—Plot of parallel-plate capacitance correction.

I1I. TuickKNESS-CORRECTION TERM
FOR PARALLEL PLATES

The following formula is derived in Appendix 11 for
the incremental capacitance per unit length of the par-
allel plates of Fig. 1(c).

ACY (t/s) = i[<1 + ~i> In (1 + %) - —:ln —j (6)

Eq. (6) is plotted in Fig. §.

1V. EXAMPLE OF THICK CAPACITIVE
IrISs IN WAVEGUIDE

The manner in which the thickness correction may be
applied to practical configurations will be illustrated by
the example of a thick capacitive iris in waveguide.
(This case has also been treated by Marcuvitz by dif-
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ferent methods.) Fig. 6(a) shows a longitudinal E-
plane section through a rectangular waveguide con-
taining a zero-thickness, perfectly conducting, sym-
metrical capacitive iris. [t is assumed that only the TEq
mode is propagating. In the limiting case of b/\,~0,
the equivalent normalized susceptance of the iris! is

B 46 s
—'=——lncsc<—>, )
Vo N 20

where B is the susceptance of the iris, Yy is the char-
acteristic admittance of the waveguide, A\, is the guide
wavelength, and b and s are dimensions defined in Fig.
6(a).
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Fig. 6—Capacitive obstacle in rectangular waveguide for (a) very
thin, (b) moderately thick, and (c) very thick cases.

In applying the capacitive thickness correction, it is
necessary to employ an equivalence theorem between
E-plane structures in TEjp-mode rectangular waveguide
and in TEM-mode parallel-plane transmission line. If
the structure has the same boundary in all longitudinal
E-plane sections in both cases, then the normalized ele-
ment values of the waveguide equivalent circuit are
identical to those of the parallel-plane equivalent cir-
cuit, if N\, of the TEs mode is used in place of A of the
TEM mode.” The normalized susceptance increment
due to thickness may therefore be evaluated in terms of
AC, as follows. Assume a parallel-plane TEM-mode
transmission line with E-plane dimension b and H-plane
dimension a@. The characteristic admittance is Y
= (a/b)v/¢/u mhos, where ¢ and u are the permittivity
and permeability of the flling medium in mks
units. The susceptance increment is AB=awAC,
=27aACy’ /AMep. Hence, the normalized susceptance
increment due to thickness is

AB 27rb ACY

Y() )\ €

& Marcuvitz, op. cit., pp. 248-255 and 404-406.

“C, G Montgomerv, R. H. Dicke, and E. M. Purcell, “Principles
of Microwave Circuits,” McGraW-Hlll Book Co., Inc., New York,
N. Y., p. 172; 1948.
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By virtue of the equivalence theorem, the correspond-
ing quantity in rectangular waveguide is

AB 27Tb ACl'
Yo B >\g €

’ (8)

where AC,’/e is obtained as a function of #/s from (2)-
(4), or from the graph in Fig. 3.

In addition to the increase in capacitive susceptance,
thickness also requires a series inductive reactance to
be added to the equivalent circuit, as shown in Fig. 6(b).
This reactance represents the magnetic-field energy in
the gap region of the thick iris. In the parallel-plane
case, the inductance of this region is simply L =uis/a,
while the characteristic impedance is Zo=/u/e(b/a).
_ Therefore, the normalized reactance is wL/Zy=2wts/\b.
In waveguide, this becomes,

wl 2mis

RS 9
Zy Aob ©)

An interesting check on the thickness correction may
be obtained in the very thick iris case of Fig. 6(c). If
t/N, <1 and ¢/s>1, the total shunt susceptance is ob-
tained by adding (7) and (8), with the aid of (5):

B 45 s wl T
‘z—[lncsc<——>+—+1+ln——:|. (10)
Vo N\ 2b 2s 8

In the limit s/6—0, this reduces to

B 4b b wt
—=~<ln4+1+#>.
Y,

11
g 4s 2s (1

The total susceptance for this case may also be evalu-
ated by adding the parallel-plate capacitance to two
times the step discontinuity capacitance. The normal-
ized shunt susceptance appropriate to the parallel-plate
capacitance is (2wt/\,)(b/s), while the normalized step
discontinuity susceptance® in the limit s/b—0 is
(2b/N,) [In(b/4s5) +1]. The total shunt susceptance is,

therefore,
B ) (2b> (1 b n 1> n
Z (Y —
Vo Ay 4s AgS$

45 b T
=——<In—+l+— —}.
g 4s 2 s

27wib

(12)

This agrees exactly with (11), which was obtained by
adding the thickness correction to the zero-thickness
value. It should be remembered that this exact agree-
ment assumes s/b<<1. However, more detailed calcula-
tions have indicated close agreement for s/5<0.25, and
fair agreement {or s/b at least as large as 0.6.

8 Ibid., pp. 307-310.
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V. ExamprrLis oF TuicK COUPLED STRIPS
A. Coplanar-Coupled Strip Line

The coplanar-coupled strip transmission line of Fig. 7
will now be considered. The odd- and even-mode char-
acteristic impedances of one strip to ground are related
to the odd- and even-mode capacitances per unit length
of one strip to ground by, respectively,

e vV
Lo = Ve and Z,. = VE , (13)
Coo Coe
](—w»h{s](—w-‘ T
()

N
T
|
A
o

——24C,

()

Fig. 7—Coplanar coupled-strip transmission line.

where u and € are the permeability and permittivity of
the filling medium in mks units. First consider the odd
mode. Symmetry permits a vertical electric wall to be
inserted between the strips, reducing the cross section
to that of Fig. 7(c). The characteristic impedance and
capacitance per unit length of Fig. 7(c) are Z,, and C.’,
the quantities desired. In general, C,’ is a function of
the dimension ratios w/b, s/b, and t/b. For t/b=0 [Fig.

C00/<w ; ll > = C ( S 0>
b b ) 00 ) b bl 5

which may be obtained exactly from Cohn.? For
{/b>0, b should be increased by £ to &' =b-¢, as shown
in Fig. 7(b) and 7(c), so that the proportions above and
below the strips will be unchanged. Then the thickness
effect at the strip edges adjacent to the gap s requires
the addition of 2AC’(t/s) to Co’'(w/b, s/b, 0). The gap
s is assumed to be small enough compared to b/2 and w
for ACy/(t/s) to apply accurately (s <b/4 and s <w,/2 are
probably sufficient). At the strip edges remote from the
gap, the thickness effect requires the addition of
2C (/b)) —2C;/(0), where C;'(¢/b") is the fringing

(14)
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capacitance to ground per unit length from each corner
of a semi-infinite plate of thickness ¢ midway between
infinite ground planes of spacing b’, and C,;’(0) is the
same for £=0. Values of C;'(t/b’) may be obtained from
(5) or Fig. 3 of Cohn.® Hence for ¢ >0,

S N ¢ . A s 0 IACY
Coo b—/y?v; = Cpo 7’_6‘. -+ 1(15/.8‘)

+ 2/ (¢/b") — 2C;/(0). (15)

For the even mode, the two strips are at the same po-
tential, so that AC,’(¢/s) does not apply. Eq. (18) of
Cohn®* may be used to obtain a good approximation to
Zoe or Coe'. Or, for s/b small, another very good approx-
imation is

., w s {
Cl\ o 77
¥y b

—c'<w ’ O)—I—ZC’(t) 20/(0),  (16)
— Looe b’b’ f b f )

where C,./(w/b, s/b, 0) is the even-mode capacitance to
ground per unit length for zero-thickness strips, obtain-
able exactly from Cohn.?

B. Broadside-Coupled Strip Line

Formulas valid for zero thickness have been obtained
for the even- and odd-mode characteristic impedances
of the two broadside-coupled strip cross sections of Figs.
8(a) and 9(a). The corresponding capacitances per unit
length of one strip to ground, .,/ (w/b, s/b, 0) and
Co’(w/b, s/b, 0), are related to these characteristic
impedances by (13).

First consider the odd mode in Fig. 8. For >0, the
proportions above and below the pair of strips may be
preserved by increasing the plate spacing to b’ =b-+42¢.
The odd-mode potential distribution permits insertion
of an electric wall at ground potential between the
strips, reducing the cross section to that of Fig. 8(c).
The characteristic impedance of the latter cross section
is the quantity desired. This may be obtained from the
capacitance per unit length of the odd mode, which is
approximately as follows,

w s t
Coa/ — 9 —— ) —
¥ v s
w s A
= Coo, <——J - 0> + 4AC2/ <—_> (17)
b b s

9 S. B. Cohn, “Problems in strip transmission lines,” IRE TrANS.
oN MicrowaveE THEORY AND TECHNIQUES, vol. MTT- 3, pp. 119-
126; March, 1955.
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Fig. 8—Broadside coupled-strip transmission line;
strips parallel to ground planes.

For the even mode, if {Ks, the capacitance per unit
length is,

w s i w s
co{— —, = :Cog<—,—,o AT
v v s o v
in which s’ =s-+2¢ If 25, then
w s ¢ 1 w
Col | —s — — =~C’<——y-), (19)
¥ v s 2 o ow

where C,/(w/b’, t'/w) is the characteristic impedance of
a single strip of width w and thickness ¢ midway be-
tween ground planes spaced by b'=5b+2£21% Here,
t'=s-+2¢. In the usual case of close coupling, (18) and
(19) will agree very closely for any values of ¢ and s.

Now consider Fig. 9. The odd-mode characteristic
impedance of Fig. 9(b) is equal to the characteristic
impedance of the reduced cross section shown in Fig.
9(c). The capacitance per unit length of the latter cross
section is

= <w d O)+4AC’<t> 20
T\ Ty ) @0

For the even mode, 1if (K5,

w s ¢ w 5
Coe’(_i—‘f—>= ae/<‘_Jﬁ) O),
b b s b b

1 R. H. T. Bates, “The characteristic impedance of the shielded
slab line,” IRE TRANs ON MicrowaVE THEORY AND TECHNIQUES,
vol. MTT-4, pp. 28-33; January, 1956.

(21)
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Fig. 9—Broadside coupled-strip transmission line;
strips perpendicular to ground planes.

in which s"=s-2¢. If >,

w s i 1 w'
Coe/ —y Z'Co —;_>
b b s 2 b w
where w'=s+2¢ and ' =w. Again, there will generally

be little difference between (21) and (22) in the usual
case of close coupling.
ul:k’2
.S

(22)

2E(k)
K(k)
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Fig. 10—Coplanar semi-infinite plate boundary in s plane.

where k=1—Fk"* is a real, positive parameter between 0
and 1 that may be solved as a function of /s from the
following equation:

t K() ~ 2E®) + BK(#)

s 2[2E(R) — F2K(R)] 24)

The symbol # is a complex variable that is a function of
z=x-+7y, and sn(u, k) is an elliptic function.!t* The
transformation relating gz and # is

enlu, k)dn(u, k)
sn(u, k) ¢

g =7

2 2E(k) — F2K (k) 2

VI. CONCLUSIONS

Practical geometries containing thick capacitive ob-
stacles or strips can seldom be solved rigorously, al-
though solutions are frequently possible if zero thickness
is assumed. The approximate thickness corrections de-
rived in this paper may be applied to many practical
cross sections for which zero-thickness solutions are
available or can be obtained. The examples treated
demonstrate the simplicity of this method.

AppPENDIX |
DEerivaTiON oF ACY/(1/s)

The derivation of (2) and (3) is based on a conformal-
mapping analysis by Davy' of the double-semi-infinite-
plate boundary shown in Fig. 10. He obtained the fol-
lowing formula for the capacitance per unit length be-
tween the two plates over the regions QBCDP and
Q’'B’C’'D’P’ of the boundary:

€
Cy = — —1In [k sn? (us, )], (23)
T

where zn, cn, and du also are elliptic functions.
At point P between D and E on the boundary, u is

negative real, approaching zero as y; approaches infinity.

The following limiting values are valid for u—0:

dn(u, k) — 1

an(u, k) — [1 — E(k)/K(k)]|u.

sn(u, B) — u
cn(u, k) > 1 (26)

Substituting these in (25) we obtain in the limit 2—0,

s
= 27
P TORER) — KK (- u) 27
while (23) reduces to
€ 1
C) = —~1n< > (28)
T kts?

' N. Davy, “The field between equal semi-infinite rectangular
electrodes or magnetic pole pieces,” Phil. Mag., vol. 35, ser. 7, pp.
819-840; December, 1944,

2 ¥, Oberhettinger and W. Magnus, “Anwendung der Ellip-
tischen Funktionen in Physik und Technik,” Springer-Verlag, Berlin
Ger., 1949
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Combining (27) and (28) leads (in the limit y,— =) to
the following:

c;(i, &) _ 2 [Eyi.ZE@ 0 } (29)
s s T s VR

This may be simplified for ¢/s—0, since then k—1,
k'—0, E(k)—1, and £"2K (k)—0. Thus

2 4y
c1'<0,2>=—1n A

A i N

(30)

Now we shall define the capacitance increment AC,’(¢/s)

by
t
[cl' <—, 33) —cy <0,2>}. (31)
Y2 0 s 5 )

ACY(t/s) = lim

Eq. (2) now follows directly from (29)—(31).

AprENDIX II

DerivatioN oF ACy (¢/s)

The derivation of (6) will be outlined to illustrate the
method of analysis, but with intermediate steps omitted
for brevity.

E. Weber® gives the transformation z=f(w) that re-
lates the z and w planes in Fig. 11 such that all the con-
ducting boundaries in the z plane are transformed into
the real axis of the w plane. The top, bottom, and end of
the semi-infinite plate in the z plane transform into the
negative real axis of the w plane, while the infinite
boundary at ground potential in the z plane transforms
into the positive real axis of the w plane. A minute break
in the real axis may be assumed at #=0 to permit the
discontinuity in potential.

The electric-field lines above and to the right of the
plate in the z plane become semicircles as |z| becomes
large. Below the plate, the field lines become straight
vertical lines as x recedes to minus infinity. In the w
plane, all electric-field lines are semicircles with center
at w=0.

The capacitance per unit length in the w plane due to
the electric flux contained between field lines of radius
1, and uy is

€ Up

C/ = —In— -
iy 2

(32)

18 E. Weber, “Electromagnetic Fields, Vol. 1,” John Wiley and
Sons, Inc., New York, N. Y., p. 351, (55); 1950. (Note that $ should

be related to 2 by p=2k2—142k/k2—1.)
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Fig. 11—Transformation between = and w planes
used in derivation of ACY(¢/s).

Let points 2z,=x,+j0 and z=x,+j0 correspond to
0, =u,+70 and w, = u,+7j0, respectively. Because of a
basic property of conformal transformations, we know
that the capacitance per unit length in the z plane due
to the electric flux contained between field lines termi-
nating at x, and x3 is exactly equal to Cw’. Now, if £ is
reduced to zero with s unchanged, points x, and x, move
to x,0 and xpe, with the capacitance per unit length still
equal to the same value, Cn'. But in comparing the t=0
and >0 cases, we must evaluate the capacitances be-
tween the same points on the x axis. Let these points be
%a0 and xso in both cases. Then for £>0 and x very large,
the electric flux terminating between x, and x3o adds
Xbo

€
ACY = —1In —
™ X

(33)

to Cu', while the flux terminating between x, and X4
adds

B e(xy — %g0)

AC, = (34)

s/2
The total difference in capacitance per unit length be-
tween the values for £ >0 and {=0 is therefore

AC,;, + AC;,’ = ZACQI(t/S), (35)

where AC,'(¢/s) is the thickness-effect increment for the
symmetrical parallel-plate configuration. Carrying the
above steps out in detail leads to (6).




